
1、全面巩固基础知识:针对学生的薄弱环节,进行有针对性的基础知识巩固和强化训练。
2、精准击破重难点:帮助学生掌握学科知识的重点和难点,提高学习效率。
3、培养自主学习能力:指导学生如何制定学习计划、如何做好笔记、如何进行复习等,培养学生的学习方法和学习习惯。
4、强化训练解题技巧:通过大量的例题和练习题,训练学生的解题技巧和应试能力。
【教学目标】:
1、提高学习成绩:帮助学生掌握学科知识,提高考试成绩。
2、培养学习兴趣:通过个性化的教学方式,激发学生的学习兴趣和动力。
3、提升自主学习能力:指导学生掌握学习方法,培养自主学习能力。

榜1、学大教育(小学、初中、高中课外文化课补习)
榜2、金博教育(小初高一对一)
榜3、新东方(小初高辅导,中考冲刺,高三集训,艺考生文化课冲刺)
榜4、锐思教育(小初高一对一辅导,中考高考一对一全日制)
榜5、捷登教育(高中辅导,高三冲刺,一对一,小班课)
榜6、星火教育(小初高中辅导,高三全日制)
榜7、博思教育(中小学全科辅导、上门家教)
榜8、龙文教育(高中辅导 高三全日制)
榜9、戴氏教育(初高中辅导,小班课)
榜10、博众未来教育(初中高中一对一辅导)
以上内容来源于网络,仅供大家参考
优良、专业的课外辅导机构在师资上绝对是配备精良的,在信息上能与各大学校和社会信息同步,而且它们等同于一个学校,各方面的设施平配备方面都很齐全。这种机构不但能让孩子找到学习上的问题所在, 还能对症下药,效果比较明显。希望各位家长可以找到适合自己孩子的优质辅导补课机构(仅供大家参考)

教学模式
1.一对一教学
一对一教学,根据每一个孩子不同的个性特征、学习因素等,为孩子量身定制出一套有针对性的一对一指导方案。
在教学上,老师十分注重硬技能和软技能之间的结合。
硬技能:学生学习必须了解的知识点、必须达到的基础要求。
软技能:学习心态、学习习惯、学习方法等多维度辅导,从而达到综合提升,全面发展的目的。
2.小组课教学
小组课是一对一服务的延伸,实施4-8人的小班课教学的授课模式。
小组课的每一个学员享有专属的教学团队、教学方案和服务团队。学生之间也能相互学习并形成良性竞争,最终达到尊重每个学生个性化学习的教学目的。
互动频次高,孩子吸收有保障
4-8人的小班课教学,老师关注度高,针对性强
课上增设问答环节,激发孩子主动学习
初中数学补课-学好这些数学考点,就能得高分
初中数学是一门重要科目,今天初中数学补课的老师跟大家分享初中数学常考的考点,从头到尾过一遍,肯定会对大家的数学学习有所帮助!
考点 1:
相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:
三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:
向量的有关概念
考点 7:
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
锐角三角比(2个考点)
考点 8:
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点 9:
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
二次函数(4个考点)
考点 10:
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点 11:
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点 12:
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点 13:
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
圆的相关概念(6个考点)
考点 14:
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点 15:
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点 16:
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点 17 :
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点 18:
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点 19:
画正三、四、六边形
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数据整理和概率统计(9个考点)
考点 20:
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答(也可点击下方预约试听)
Copyright © 2016-2023 www.shangsekeji.com All rights reserved. 网站备案号:豫ICP备2022021264号.
该文章有用户自行上传发布,如有侵权内容请及时联系我们将第一时间删除。